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PHYSICS OF DENSE FLUIDS

Marvin Ross
Lawrence Livermore National Laboratory

Physics Department, H-Division
P.O. Box 808
Livermore, Ca 94550, USA

ABSTRACT.

We review recent advances in the theory of dense fluids and of the
application of these methods to the study of shock compressed liquids.

I. INTRODUCTION

In the present article we examine the properties of liquids and fluids
at high pressure and temperature with special emphasis on theoretical
and shockwave studies. The extremely high pressures and temperatures
generated in shockwave experiments on liquids provides the theorist
with a unique opportunity to study intermolecular forces, electronic
and chemical properties, and melting at extreme conditions.

In a shockwave experiment one measures the shock and particle
velocities and from these the pressure and density of the final state
can be obtained directly. For some materials it is also possible to
measure temperature and optical properties. But for the most part
detailed information about atomic and molecular processes must come
from theoretical studies. It is the responsibility of the theoretician
to interpret the experimental results in terms of microscopic physics
and to extract additional information and insight.

This article is organized into three main sections. Section 2 is
a review of some of the theoretical and computational methods that are
useful in the study of dense fluids. 1In section 3 we introduce the
fundamental relations of shock physics. Section 4 will be devoted to
examining the application of liquid theory to the interpretation of

shock data.
2, THEORY OF FLUIDS AT HIGH PRESSURE
The most important advances in the theory of fluids have come from

computer simulations and the development of computationally fast
approximate models. For a number of well-defined potentials,



simulations carried out by Monte Carlo and molecular dynamics methods
have been used to determine the pair distribution and thermodynamic
and transport properties over a wide range of conditions. An
extensive set of data exists for the hard sphere, Lennard-Jones and
inverse-power potentials.

Computer simulations should be viewed as experiments producing
exact data which complement laboratory experiments. For the case of
strongly coupled degenerate plasmas with densities comparable to those
found in high-energy astrophysics and laser-fusion-compression
experiments, computer simulations are the only 'experimental' data.
Computer similation results have been extremely valuable in the
development and testing of approximate methods such as variational
fluid theory and the hypernetted chain method. These methods are now
'work horses' for applications to simple fluids and dense plasmas.

For a detailed review of liquid theory, computer methods and results,
see Barker and Henderson! and Hansen and McDonald.2 Although
computer simulations provide a sound basis for statistical theories,
they typically deal with idealized systems. The physically interesting
atomic and electronic processes must be introduced separately with '
approximate models.

But in addition to accurate statistical mechanical theories the
determination of real fluid properties requires a detailed description
of the intermolecular forces. From a rigorous point of view this part
of the problem is in the least satisfactory state. Almost all useful
intermolecular potentials are at least semiempirical having been
obtained in some way from experimental information.

In this section we first discuss the computer simulations which
provide "exact" results but which are slow and expensive and then
examine several approximate methods which are, computationally fast
and have been tested for accuracy against the computer simulatioms.

We close this section with some remarks regarding intermolecular

potentials.
2.1 Computer Simulations

The two principal computer simulation methods are Monte Carlo and
molecular dynamics. In the Monte Carlo method, random sampling
techniques are used in which particles are moved and an ensemble of
possible configurations- is generated. Thermodynamic properties are
obtained by averaging the properties of these configurations. 1In
molecular dynamics the ensemble of configurations is obtained by
directly integrating the complete set of Newton's equations of
motion. Despite these fundamental differences the methods have
several common features. In both, N molecules are confined to a box
of volume V at temperature T. Computer size and speed limits ¥ to
several hundred particles. To minimize surface effects periodic
boundary conditions are employed. This consists of filling three
dimensional space by replications of the original cell in which the
molecules in each cell occupy the same relative positioms.

The initial or starting configuration may be ordered or random.
The potential energy or force exerted on a particle is computed by
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Fig 2.1. A two dimensional periodic system. Each particle in the
central box interacts with its nearest neighbors in the same or in a
neighboring cell as defined by the dashed lines. If a particle moves
outside the central cell, then its counterpart in an adjacent cell
moves in through the opposite boundary. One can assess the validity
of the periodic boundary conditions by repeating the simulations using
different numbers of particles.

summing over the interactions with nearest neighbors in the same and
adjoining cells.

In the Monte Carlo method a particle, chosen at random, is moved
from position (x,y,z) to (x, + 8x, ¥y + 8y, z + &z) by randomly choosing
éx, 48y, and §z. The change in potential energy SU is computed and if
the move results in a decrease in energy the new configuration is
accepted and its properties are included in the ensemble averaging.

If the energy increases the computer selects a random number between 0
and 1 and compares it with exp (-8U/kT). The move is allowed if the
random number is the smaller, otherwise the move is rejected and the
previous configuration counted again. The properties of the system
are obtained by taking the ensemble average over all configuratioms.

In the molecular dynamics technique the velocities and positions
for all N interacting particles are determined by solving Newtons
equations. The molecular dynamics technique has the advantage that it
can be used for studying non-equilibrium processes provided the
characteristic relaxation times are significantly shorter than the
computer time (~10~11 seconds). The equilibrium properties determined
by Monte Carlo and molecular dynamics are in excellent agreement. The
free energy and entropy can be determined for a state of interest by a
thermodynamic integration along a path connecting to one in which the
free energy is known. For example by integrating from the gas along a
reversible path to the liquid.

Constant pressure molecular dynamics and Monte Garlo simulations
as opposed to the constant volume methods described above, have been
increasingly used to study high pressure solid-solid phase
transitions.3 The new method allows the system to change both its



volume and shape in response to an imbalance in the forces and permits
the detailed study of the mechanics of a transition.

Some Monte Carlo Results

The first molecular dynamics calculations were made for hard-sphere
systems. This potential is

&(r) =, r Sd-
and

®(r) =0, r > d. (2.1)

where d is the hard sphere diameter. Thus the dynamics breaks down
into a series of "billiard ball" collisions following which molecules
move in straight lines. The pressure data in the fluid (Fig. 2.2) may

be expressed as

?—=(1+n+n2-n3)/ 1-mnd , (2.2)

where n = (1/6)pd3. B = 1/kgT, kg is the Boltzmann's constant and p
is the number of particles per unit volume. n is the hard sphere
packing fraction. The excess Helmholtz free energy per molecule, A,

can be obtained from

;& = IP [2—? -1} —-2—:" +logp -1 (2.3)
which leads to
.:‘l{§_ﬂ_'l._'_l'l£ (2.4)
NKT 2 :
(1 ~n)

This expression is referred to as the Carnahan-starling4 hard sphere
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Fig. 2.2. Equation of state of hard sphere system. The quantity
Po is the close-packed density.



free energy. Although the hard sphere system is an idealized model it
is a very useful prototype and widely used as a reference system for
fluids. More realistic systems have softer repulsions. Extensive
computer results also exist for systems fo particles interacting
through the softer inverse power potential, &(r) = e(r*/r)? for n = 12,
9, 6, 4 and 1 and the more realistic Lennard-Jones (LJ) potential,

¢(r) = elr*/r)l2 - 2(rx/r)6]. Simple analytic expressions have been
fitted to these "experimental" data which permit rapid evaluation of

thermodynamic properties.5
2.2 Fluid Variational Theory

A number of approximate methods have been developed for calculating
liquid properties. They have invariably been derived from a
perturbation theory in which the properties of the reference system is
well known. The most widely used reference system is the hard sphere
fluid. At high pressures many of these standard perturbation theories
have serious short comings. In this section we limit ourselves to
those which have proven useful at high pressures as validated by
testing against computer simulations and successful applications to
the study of dense liquids. The most useful treatment of high
pressure liquids has been with variational theory.

In the variational formulation of perturbation theory the
Helmholtz free energy A of an interacting system is approximated by
the use of the Gibbs-Bogolyubov inequality:

A<A + <o - 5>, . (2.5)

This equation states that the free energy of the interacting system is
bounded above by the free energy of a reference system (Ag) plus the
difference in potential energy between the actual system and the
reference, averaged over all configurations of the reference system.

The reference system of virtually unanimous choice has been the
hard sphere. This system represents the limiting case of particles
interacting by a repulsive potential and has been well characterized
by the systematic molecular dynamic computer studies. Analytic
expressions for Ayg(d,p) and the pair distribution function gyg(r/d,p)
have been obtained, as a function of p and d from computer data.
Closed-form analytic approximations to gyg have also been derived
from solutions of the Percus-Yevick equations. For more details see
reference 1. Consequently, the problem becomes to a large measure how
to choose the hard-sphere diameter. It is chiefly the manner in which
this choice is made that distinguishes the various perturbation
theories.

Mansoori and Canfield were the first to use hard spheres as a
reference system in a variational theory. The excess Helmholtz free
energy of the fluid reduces to

@

N 3
A< AHS +5p Io sHS(r. n) ¢(r)dr . (2.6)

where Ayg and gyg are the free energy and pair distribution



function of the reference system. Whereas hard spheres have many
attractive features, they incorporate a repulsion that tends to be
unrealistically severe at high density and hence limits their accuracy.

Soft Sphere Variational Theory®

A more realistic system is the inverse 1l2th-power or soft sphere (SS)
reference potential. For this system, the excess Helmholtz free
energy may be written as the inequality

N 3
A<A, M) +5p Io B1,(Ts M) [#(r) ~ ¢,,(r)] d'r (2.7)

where A is some characteristic parameter of the reference system which
minimizes the right side of Eq. 2.7. Judging from the usefulness of
the hard-sphere packing fraction n as a universal fluid scaling
parameter, it is tempting to relate the parameter A to n and express
the reference-state properties as functions of n. We may approximate
A7 in terms of hard sphere theory by using the equation

N 3
A, SA+5p Id Bpy(Tr M) ¢ ,(r) d°r . (2.8)

where gpy is the Percus-Yevick approximation to the hard sphere pair

distribution function.

Listed in Table 2.1 are Helmholtz free energies for the inverse
12th-power system as determined from the Monte Carlo calculations of
Hoover et al.’ and Hansen.8 These are shown in columns 2 and 3,

TABLE 2.1. Comparison of inverse 1l2th-power excess
Helmholtz free energies from Monte Carlo calculations (MC),

fitted with soft sphere theory using Eq. (2.8), and from
hard sphere theory using Eq. 2.9.

ple/kT)1/4 Mca Mc®  Eq. (2.9) Eq. (2.8)
0.1 0.40 0.40 0 40 0.44
0.2 0.91 0.91 0.90 0.99
0.3 1.53 1.53 1.52 1.67
0.4 2.32 2.33 2.32 2.53
0.5 3.33 3.34 3.32 3.60
0.6 4.60 4,61 4.60 4,93
0.7 6.20 6.21 6.20 6.60
0.8 8.19 8.21 8.20 8.67

2  Results from Hoover et al., Ref. 7.
Results from Hansen, Ref. 8.



respectively. In column 5 are results computed by the hard sphere
variational method using Eq. (2.8). The agreement is of the order of
8%. We now determine a function of n which, when added to the RHS

of Eq. (2.8) and included in the variational procedure, will result in
computed properties that agree exactly with the Monte Carlo results.
Fi2(n) = - (n4/2 + n? + n/2) is such a function. The free energy
calculated with Eq. 2.9 is shown in column 4 of Table 2.1. Thus the
free-energy function which reproduces the Monte Carlo inverse
12th-power results exactly in terms of hard-sphere parameters, is

N 3
TR L R Id Bpy(Ts N) &;,(r) d°r + F ,(n) NKT . (2.9)

We now replace Aj(A\) in Eq. (2.7) by Aj5(n), and the full expression
for A becomes

(-}
N 3
A< AHs +3p Id gpy(r. n) ¢12(r) d’r

N 3
+ Fp,(n) NKT + 5 p Io B12(Ty M) [#(r) - ¢,,(r)] d'r
(2.10)

It contains terms with gj5(r, A) and gpy (r, n). We approximate gj,
with gpy and by combining the second and fourth terms, Eq. (2.10) is

rewritten as

@
N 3
A< AHS + %_ Id EPY(I'. n) ¢(r) d'r + Flz(n) NKT, (2.11)

This equation is formally identical to the original hard-sphere
variational formulation except for the additional term, Fy3(n). This
term modifies the hard sphere system in such a manner as to convert it
to an inverse twelfth power reference preserving the usefulness of
n and the analyticity of gyg. The n is chosen to have the value that
minimizes the Helmholtz free energy. The pressure (P) and excess
internal energy (U) are obtained by taking the derivatives of A:

BP/p =1 + p (%Eé)'r , (2.12)
_ of28A :
BU = IS(a'3 )P : (2.13)

Young and Rogers® have constructed a thermodynamically consistent
inverse 12th power fluid variational theory (I12) which uses an
accurate fit to the reference fluid free energy and tabulated accurate
reference fluid radial distribution functions computed from a new
integral equation. 1In reduced variables, where x = r/a, a = (3/4ﬂp)1/3



Table 2.2. Comparison of theoretical (I12 and SS) and simulation (EX)
reduced total pressures and reduced excess internal energies for the

Lennard-Jones fluid.? T* = kT/c and pX = p T*3/v2,

PV/NKT U/NKT
T* px EX 112 ss EX 112 Ss
100 0.2 1.221 1.225 1.216 0.036 0.037 0.034
0.5 1.675 1.682 1.669 0.115 0.117 0.111
1.00 2.95 2.98 2.96 0.361 0.366 0.358
2.0 9.50 9.51 9.57 1.767 1.772 1.779
2.5 16.29 16.45 16.55 3.304 3.350 3.365
20 0.2 1.270 1.272 1.258 -0.005 -0.002 -0.010
0.5 1.930 1.947 1.922 0.026 0.034 0.018
1.333 7.999 8.031 8.089 0.942 0.960 0.958
1.765 16.68 16.66 16.75 2.65 2.65 2.66
5 0.2 1.169 1.177 1.149 -0.202 -0.178 -0.200
0.5 1.867 1.859° 1.822 -0.474 -0.448 -0.488
1.00 6.336 6.437 6.491 -0.456 -0.422 -0.448
1.279 13.44 13.37 13.46 0.435 0.430 0.413
2.74 0.1 0.97 1.00 0.97 -0.223 -0.176 -0.199
0.3 1.04 1.07 1.01 -0.650 -0.580 -0.630
0.55 1.65 1.62 1.60 -1.172 -1.122 -1.181
1.00 7.37 7.27 7.37 -1.525 -1.525 -1.559
1.10 10.17 10.23 10.30 -1.351 -1.313 -1.352
1.35 0.1 0.72 0.76 0.75 -0.578 -0.383 -0.423
0.3 0.35 0.35 0.27 -1.548 -1.284 -1.374
0.5 0.30 0.18 0.14 -2.496 -2.327 -2.430
0.9 4.58 4.52 4.60 -4.192 -4.144 -4.220
0.95 6.32 6.00 6.08 -4.230 -4,239 -4.311
0.810 0.801 0.057 -0.058 0.073 -7.068 -6.963 -7.074
0.8839 1.946 2.106 2.122 -7.707 -7.580 -7.687
0.72 0.8350 -0.080 -0.182 0.019 -8.400 -8.285 -8.391
0.9158 2.248 2.614 2.687 -9.079 -8.909 -9.031

and z = (Nr*x3/v2 V)(e/kT)1’4. the variational inequality becomes

(z) ® .
e PR Bl Y0 N o 2
et < " mer t2 [o [ T xlz] B,,(X, 2) x” dx, (2.14)

where I' = 4 v2vz/3) is the variational parameter used to minimize the
right-hand side of Eq. (2.14). Values of gj3(x, z) for arbitrary z are
determined by using cubic spline interpolation in z space. Pressure
and energy are then determined by numerical differentiation of the

free energy with respect to volume and temperature, respectively.



RESULTS OF CALCULATIONS

Calculations for the thermodynamic properties of the fluid theories
were carried out and the results were compared with computer
experiments for two potentials—-the Lennard-Jones (LJ)

() = ¢ [(:—*)12 -2 (& 6] : (2.15)
and the exponential-six (exp-6)
6 a X é
$(r) = :[(a ) e*pla(l - ©/t0)) - (a e 6)(1‘ )] . (2.16)

The results for the Lennard-Jones potential are shown in Table
2.2 and are compared with the Monte Carlo simulations here. Similar
agreement was found using the exponential-six using a = 13.5.9

The results show that the soft sphere and inverse-12th
variational theories are in good overall agreement with computer
simulations of various model fluids. The agreement between theory and
simulation is excellent at high pressure near the melting curve. SS
theory, which is really an approximation to the Il12 theory, useful as
a practical method for calculating fluid properties. An advantage of
the SS theory is the use of an analytic gyg(r, n) subroutine,
which avoids the problem of interpolation errors with tabular
functions. For most applications the marginal improvement of I12
theory may not justify the additional computational complexity.

Although perturbation theories are fast and convenient and give
good results for thermodynamic properties they do not predict accurate
structural properties. The integral equations such as the modified
hypernetted chain (HNC) equation are more complicated computationally
but as a result of several recent advances they can now be made to
yield thermodynamic and structural properties in excellent agreement
with computer simulations. Integral equations are also more directly
applicable to mixtures and to ionic systems than are perturbation
theories. A complete discussion the integral equations are beyond the
scope of this review, but a good comparison of this method and
variational has been reported by Talbot et al.10

2.3 Intermolecular Potentials at High Density.

Among the least satisfactory features of liquid physics has been the
difficulty in obtaining accurate intermolecular forces from first
principles. Typically the forces calculated between pairs of
molecules are too stiff when used at high densities because they
neglect many-body interactions. The case of H; illustrates this well.
Figure 2.3 compares the Hp-H; pair potential determined from
quantum-mechanical calculations with that derived from shock data.
For many dense liquids a useful semiempirical potential is the
exp-six (Eq. 2.16), where a, r* and ¢ are adjustable parameters,
typically obtained by fitting to experimental data, which determine
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Fig. 2.3. Many-body effects in Hp-H, potential. Comparison of
the hydrogen pair potential obtained from ab initio Hy-Hj
calculations with one obtained from shock data.

the repulsive stiffness, the position of the potential minimum and its
depth. The exponential term is a more realistic characterization of
interatomic repulsive forces than the inverse twelfth power
(Lennard-Jones) potential. At very small separations the attraction
may become unrealistically large. This can be avoided by multiplying
the attractive term by a damping function.

A good example of such a procedure is to be found in the widely
used Aziz potential for helium.ll The form of the potential is

V(r) = eV*(x)

Cc C C
VX(x) = A exp(- ax) -(—% 2y -—;%) Fx) (2.17)
x x x
where
D 2.
F(x)=exp[—(;-1) ]forx<D
=1 for x 2D

and D = 1.28 and x = r/rp.
The function F(x), which is considered to be universal for all

spherical systems, was obtained by fitting a potential of this form to
the accurately known potential curve of the 3Lf state of Hy. This
fixed the value of parameter D.



The input data for this potential are the SCF HF calculations of
the repulsive interaction, Cg, Cg and Cjq are the multipole dispersion
coefficients. The parameters c¢/k = 10.8 K and ry = 2.98 A result from
constraints on the value of the reduced potential and its slope at its
minimum. The value of a may be determined from scattering data or
fitted to Hartree Fock results at small r.

A considerable simplification in the choice of potential
parameters for shock-compressed molecular fluids has emerged from the
recognition that the repulsive pair potentials approximately obey the
corresponding-states scaling pri.nciple.12 That is, for two fluids the
ratios of the depths of their potential wells (c) are in the same ratio
as their critical temperatures (T), and the cubes of their
characteristic length scales (r*) are in proportion to their critical
volumes (V.). As a result of having fitted parameters to the Ar
potential, it has been possible to predict within experimental error
the Hugoniot curves for most molecular liquids. This means that the
repulsive forces which dominate the high-temperature properties have
similar functional dependencies for most fluids. An exception is
hydrogen, which has a much softer repulsive force than other
closed-shell molecules.

3. SHOCK COMPRESSION

A shock wave is a disturbance propagating at supersonic speed in a
material, preceded by an extremely rapid rise in pressure, density and
temperature. The general reader often associates shock waves with
explosions and other uncontrolled and irreversible processes.

Although shock waves are irreversible, the process is well understood
and can be controlled to produce a desired response. Shock
compression studies obtain high pressures by introducing a rapid
impulse through the detonation of a high explosive, the impact of a
high-speed projectile or the absorption of an intense pulse of
radiation. A shock wave not sustained loses energy through viscous
dissipation and reduces to a sound wave (e.g., thunder). High-speed
optical and electronic methods are necessary to measure certain
dynamic variables which determine pressure, density and energy. 1In
shock-wave experiments, the passage time of the shock is short
compared ot the disassembly or 'fly away' time of the sample. As a
result the attainable pressures for a given material are limited only
by the energy density supplied by the driver. Chemical explosives
have been used to obtain pressures up to 1 Mbar in liquids and up to
13 Mbar in metals, with accompanying temperatures of tens of thousands
of degrees Kelvin. Final pressures ranging from 20-158 Mbar have been
reported using underground nuclear explosions. In inertial
confinement studies, pellets of liquid deuterium are subjected briefly
to laser-driven dynamic pressures of about 1000 Mbar and temperatures
in excess of 107 K. An excellent introduction to shock wave physics
is to be found in Zeldovich and Raizer.13



3.1 Introduction to the Dynamics of Shockwaves

Consider a fluid or solid at rest with constant density and pressure,
Pos Po bounded on the left by a plane piston in a cylinder of area A.
Let us assume that at t, the piston is set in motion with a
constant velocity u,. This motion compresses the material before it
and a disturbance with velocity propagates in the direction. The first
infinitesimal compression at the piston face results in the propagation
of a sound wave with velocity C. However, subsequent compressions at the
piston face take place with the material at higher densities and result
in higher local sound speeds. This produces a train of waves in which
the first is at the speed of sound in the undisturbed material and the
last, closest to the piston face, is supersonic. Because the last wave
can catch but not pass .the first, all the waves eventually coalesce into
a single, steep steady wave front across which exists a sharp
discontinuity in pressure, density, and temperature. The width of the
discontinuity is generally a few molecular mean-free-path lengths.

Sound wave C
..1//r PoPo

Supersonic wave C + ¢
Sound wave C

VNL\

up=¢] PP PoPo

1

X

Fig. 3.1. Formation of a one-dimensional planar shock wave. Shown by
pressure-density-distance p-x plots at successive times.

—% —(u,—u ), pq | =—u,, Ao

Fig. 3.2. Steady shock wave as viewed by an observer on the shock
front. The fluid streams toward the shock front at a velocity ug and
rushes to the left away at the velocity ug-up.



We can now apply the general laws of conservation of mass,
momentum and energy to determine the pressure, density and velocity

of the disturbance.
A useful coordinate system is shown in Fig. 3.2 in which the

observer is moving with the shockfront.
During a period &t a mass of pjugAst passes through the
shockfront. Conservation of mass requires that

This leads to an expression for the density change
P u
N u—n . (3.2)
! s

The pressure jump across the shock may be determined from the
conservation of momentum. To the observer the momentum flow from the

unshocked fluid into the shockfront is
(poug ASt) ug

The momentum flow away from the shockfront is
p1(ug - up) Adt (ug - up) ,

or using Eq. 3.1
Pous Ast (ug - up)

The change in momentum must equal the difference in forces across the
front (P; ~ Pg) Adt. Thus conservation of momentum leads to an

expression for the pressure change.

Pl - PO = pousup . (3.3)

Similarly the law of conservation of energy.

2 2
P1 (us - u) Po u,
pl(us - “p) E1 + ;— + _———E—_B—— = P Ug Eo + ;— +5 |-

1

leads to the energy equation.

1
E1 - Eo =3 (P1 + Po) (Vo -V , (3.4)
in which we introduced the specific volumes V5, = 1/p, and Vi = 1/p7 in
place of density. Equations 3.2-3.4 are referred to as the Hugoniot

equations.
The derivation of these equations considers the shockfront as a
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Fig. 3.3. Experimental Hugoniots for metals.

discontinuity but says nothing of its width. Only the equilibrium
properties on either side are considered in the flow properties.

The Hugoniot equations represent the locus of all final states
that can be reached by shock-compressing a material from a given
initial state; the resultant curve of pressure against volume is known
as a Hugoniot. If the initial state is known, then the final-state
properties may be determined from a measurement of any two of these
five properties (ug, u;, P, p, E). Of these, the shock and particle
velocities are the mosg commonly measured. A discussion of
experimental methods is beyond the scope of the present review. For
the interested reader a complete description of the shock wave
techniques for liquids has been given by Nellis and Mitchell.l4

"Shock-wave measurements have been carried out on most elements on
a very large number of compounds. The most extensive single source of
all published Hugoniot data up to 1977 is the LLNL Compendium of Shock
Wave Data by van Thiel et al.l3 Marsh has made available all of the



Los Alamos data including previously unreported measurements.1® These
two collections include data for elements, alloys, rocks, minerals and
compounds, plastics and synthetics, woods, assorted liquids, aqueous
solutions and high explosives. Al'tshuler et al. have reported a
critical analysis of shock measurements for most of the metals.l

The assumptions made in deriving the Hugoniot equations were
one-dimensional steady motion, thermodynamic equilibrium immediately
ahead of an behind the shock front, and negligible material strength.
The first assumption can be met experimentally. The second will hold
if the relaxation times are much less than the resolution of the
detectors ~ 10 ns. The third is justified for pressures appreciably
greater than the yield strength of the material. Typical yield
strengths in metals are 20 kbar and much less for most materials. 1In
the case of liquids, which have no yield strength, this creates no
problem. The temperature cannot be obtained from the Hugoniot
equations, but must be derived from an equation of state. In a few
cases it has been determined from a direct measurement of the emitted
radiation.

Several equations of general interest follow from the
conservation laws. In place of energy we introduce the enthalpy H = E
+ PV. We can write the Hugoniot equation in the equivalent form

1
Hl - Ho =3 (P1 - Po) (Vo + Vl) . (3.5)
P1 | — —
Po [~ ~
| ]
Vi Vo

Fig. 3.4. The crosshatched area represents the piston kinetic energy
and is the total energy transmitted by the piston to a unit mass
initially at rest.

Eqs: 3.2 and 3.3 can be combined to obtain explicit expressions
for the shock velocity



P, - P '
W v (v_l-_vo> (3.6)
1 o

and particle velocity

2
up = (Vo - Vl) (P1 - Po) (3.7)

These expressions are particularly useful for clarifying the
relationship between shockwaves and thermodynamic properties.
Consider the dashed line AB in Fig. 3.4 connecting the initial
Hugoniot point P, V, to Py, Vi. The slope (P; - Py)/(Vq - V,),
referred to as the Rayleigh line, is related to the square of the
shock velocity according to Eq. 3.6.

If the material is initially at rest the kinetic energy acquired

by compression of the piston

ke

- Po) (Vo - Vl) (3.8)

N |

(P1

is equal to the crosshatched area. If P; >> P, then from Eq. 3.4 the
area is approximately equal to the increase in energy,

i
El - Eo =3 Pl(vo - Vl)
and
v
El - EO = 2 . (3.9)

It can be shown that in the weak limit (P; » P,) shock compression is
isentropic. Hence Eq. 3.6 reduces to

/o - P
1 o /(3P

u; = V% v.-v > %/ av) =C ,
1 o 8

and the initial shock velocity approaches the sound speed (C).

The entropy of the compressed fluid increases as the shock
pressure increases. This results in a large increase in temperature
and demonstrates the irreversible nature of the shock process. Figure
3.5 compares the calculated temperatures and pressures for
isentropically and shock compressed liquid hydrogen.

3.2 Structure of a Shock Front in a Liquid
In the derivation of the Hugoniot equations the shock front has been

treated as a discontinuous surface. 1In fact this region must be
likened to a transition zone in which molecules are rushing in with a
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Fig. 3.5. The Hugoniot, isotherm and isentrope of molecular hydrogen
illustrate the large pressure and temperature rise that accompanies
shock compression. Liquid hydrogen V, = 28.4 cm3/mole. -

Boltzmann distribution at the initial temperature and rushing out at a
Boltzmann distribution at the shock temperature. The passage is
irreversible and accompanied by a large entropy change. Through this
transition zone there occur dissipative processes associated with
viscosity and thermal conductivity. Experimental methods are not
capable of directly probing the structure of shock front. Thus to
properly describe the microscopic nature of shock compression it is
necessary to study the process using molecular dynanmics.

Klimenko and Dreminl® started with a 2592 molecule of equilibrium
liquid argon initially at V, = 36cm3/mole, T, = 131 K, and P, = 145
atm. The atoms interact through a Lennard Jones potential. To
produce a shockwave a layer of particles at one end of the cell is set
in motion with a velocity Up in the x-direction. This piston
compresses material before it and propagates a shock wave down the
cell. After a time interval the process reaches a steady motion and
the density temperature and pressure profiles shown by the solid
curves in Fig. 3.6 were calculated.

The material is compressed rapidly to a width of about 10 R (3
atomic diameters) within a time of about 10~13 sec. This time is
comparable to the translational relaxation time and prevents complete
equilibrium in the front. This results in significant overheating of
the temperature T, in the direction of propagation (not shown). T,
(shown) is the temperature parallel to the front.
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Fig. 3.6. Pressure and temperature profiles argon taken from Refs. 18
and 19. The full curves are the results from atomistic molecular
dynamics. The dots are the solution of the Navier-Stokes equatioms.
Pressure in kilobars, and temperatures in Kelvins are given as
functions of distance (angstroms). The full curves include, from the
Navier-Stokes viewpoint, the bulk-viscosity contribution to the mean
pressure. The data correspond to a shock velocity of 2.6 km/sec.

In contrast to molecular dynamics, continuum mechanics ignores
atomic structure and describes material properties in terms of
continuous gradients of mass momentum and energy. Properties such as
viscosity and thermal conductivity are assumed rather than derived and
are determined from gradients of the velocity and temperature.
Macroscopic theory should apply best to conditions where gradients are
small. Hooverl9 and coworkers20 have shown that despite these
apparent limitations calculations of the shock profile using the
continuum Navier-Stokes equations agree well with those of molecular
dynamics simulations.

Just why the agreement is as good as it is over such a wide range
of fluid conditions has not been explained.20 Theoretical efforts to
g0 beyond the Navier-Stokes level have not been completed yet.

4, SHOCK COMPRESSION OF SIMPLE LIQUIDS

Theoretical and experimental studies have been carried out on a wide
range of shock compressed liquids. Space limitations require us to
restrict the discussion to a few materials which best illustrate some
particularly unique or interesting physics. Because of their
simplicity it is appropriate to begin with a discussion of the rare



gas liquids. We follow these with discussions of successively more
complicated molecules.

4.1 Argon and Xenon

The static diamond cell and shockwave techniques for studying the
properties of matter at very high pressure have so little in common
that it may not be apparent to the nonspecialist that the two methods
can be used to generate equation of state data that are directly
comparable. Recently diamond-window cell measurements for argon have
been pursued to 800 kbar at 298 K. These measurements provide an
excellent opportunity to study their intermolecular forces and to
compare shock and static methods for a simple system.21

A Comparison of Static and Shock Measurements

In the diamond-window static high-pressure cell the faces of two
opposing diamond anvils are squeezed together and isothermally
compress a sample of a few microns in size to megabar pressures. The
sample density is determined from a direct x-ray measurement of the
unit cell volume. Pressure may be determined routinely to high
accuracy by measuring the density of a secondary standard such as NaCl
or by recording the shift of the R; ruby fluorescence line. The
pressure dependence of the ruby line has been cdlibrated against
isotherms reduced from shock data.

In contrast to static methods shockwave experiments create high
pressures by introducing a rapid impulse into a sample by the impact
of a high speed projectile. The pressure, energy and compression are
determined directly from the measurement of the shock and particle
velocity and a knowledge of the initial conditions. Determination of
the shock pressure is absolute and does not require a secondary
standard. This feature has made shock data valuable for independent
static pressure calibrations. 1In the case of liquid argon the final
temperatures are on the order of several tens of thousands of
degrees. The very different nature of the final states makes any
direct comparison heavily reliant on theoretical methods. 1In this
regard argon has several useful features. It is a relatively simple
inert gas atom with a large electron band gap. The forces between
atoms can be approximated by an effective pair-wise additive
interactions so that established methods in statistical mechanics
provide a convenient means for calculating thermodynamic properties.

Shock compression experiments on liquid argon have been carried
out by several workers.14,22 Nellis and Mitchelll4 using the two stage
light-gas gun at Livermore, achieved final pressures up to 900 kbar
and temperatures calculated to be approximately 30000 K. Recently
Grigoriev et al.,23 have reported measurements of a liquid argon
Hugoniot to 670 kbar and the first shock temperature measurements on
this substance. In the range above 400 kbar the temperature is over
13000 K and is sufficiently high to cause an appreciable degree of
electronic excitation. Below this pressure, argon behaves as an
insulator and the only contribution to the thermodynamic properties
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Fig. 4.1. A comparison of static (triangles), shock-wave (bars) and
theoretical (curves) results. Dotted bars (]-®-|) are shock data
from Ref. 14 and bars (|--|) are from Ref. 23. Solid curves were
calculated using the exp-6 with a = 13.2 and dashed curves with a =
13.0. The initial conditions of the shock-compressed liquid are at 87
K and 28.64 cm3/mol.

are from atom-atom interactions and atomic motion. It is these data,
below 400 kbar and uncomplicated by thermal electron excitation, that
provide a determination of the interatomic potential and a direct
comparison with the room temperature isotherm.

Monte Carlo calculations of the pressure and energy were made
using the exponential-six potential (Eq. 2.16) with paraneters
€/k=122K, r* =3.85 A and using two different values of «(13.2 and 13.0).

Starting from a set of initial conditions, a Hugoniot curve is
determined using an equation-of-state model (in this case the Monte
Carlo method) by first choosing a final state volume and then
iterating on the temperature until the calculated values of E and P
satisfy Eq. (3.4). The Hugoniots and isotherms calculated using these



25
20—
% 15}
[ ]
e
e
2
§
£
K 10
5
0 1 L L | B
10 1 12 13 14 15 16
V {cm3/mol)

Fig. 4.2. A comparison of the measured and theoretical shock
temperatures. The solid curve represents Monte Carlo results (a =
13.2) which do not include electronic excitations. The dashed curve
includes electronic excitations. The bars are experimental data from
Ref. 23.

potentials are shown in Fig. 4.1. T, and V, for liquid argon are 87 K
and 28.64 cm3/mol respectively. The best fit to the shock data of
Nellis and Mitchell and to the diamond-window cell measurements is
given by the exp-6 with an a« = 13.2. The curves calculated using
e = 13.0 are within the experimental precision but lie on the lower
pressure side. The newly reported Soviet measurements23 are in
substantial agreement with the present results although their data is
shifted on average to slightly higher pressures. The curves
calculated using the two values of a provide a measure of the
agreement between two very different sets of experimental data and of
the uncertainty to which an effective potential can be determined.

An important feature of the shock process that provides a
particularly sensitive probe of the interatomic forces at small
separations is the high temperature that is generated along with the
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Fig. 4.3. A comparison of the calculated argon pair distribution
function, g(r) for the statically compressed solid and shock
compressed liquid.

high pressure. Grigoriev et al., determined the shock temperatures by
measuring the emitted radiation and comparing these values to a
standard pyrometer. The measured and calculated shock temperatures
are shown in Fig. 4.2.. Shown are the Monte Carlo results for a =

13.2 which do not include electronic excitation (solid curve) and the
temperatures from an argon Hugoniot calculation which does include
these excitations (dashed curve). Above 13000 K (400 kbar) the
electronic excitation begins to absorb a significant amount of the
shock energy which leads to a lowering of the temperature. The
measured values fall significantly below those predicted by theory.
The Soviet authors found the same result and have explained this as
due to electron screening of the emitted shock radiation. Below 400
kbar where these effects are small the agreement between theory and
temperature measurements is excellent. In the next section we return
to consider the higher temperature partially ionized argon. The
overall agreement between shock and static data is excellent despite
the appearance of some excessive scatter in the diamond window results
between 100 and 200 kbar. The goodness of the agreement lends
credence to the validity of the ruby scale at these pressures to an

accuracy within 10%.
The importance of temperature in the study of intermolecular
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Fig. 4.4. Pair potentials ¢(R)/k in units of degrees kelvin plotted
versus interatomic separation. Curves are discussed and referenced in
the text.HFD-C is a purely two-body potential and exp-6 is the best
fit to both static and shock data. The difference between the two
curves represents the softening due to many-body interactions. Also
shown are Hartree-Fock (HF) results. The triangles represent
configuration interaction (CI) results.

forces is well illustrated in Fig. 4.3 which shows the pair
distribution in the fluid at 350 kbar and 12000 K, and in the 298 K
solid at the same volume (13.5 cc/mole) and at the highest density
reached in the diamond cell (8.0 ce/mole). These curves identify the
range of separations probed in the various experiments. As expected,
the angle-averaged pair distribution of atoms in the solid are sharply
peaked at separations corresponding to nearest neighbor shells whereas
the fluid distribution is smeared over a wide range of separationms.
The first maximum in the shocked fluid appears near 2.6 R which is
about the same position as in the solid at 8 cc/mole and 800 kbar.
But, the atoms in the fluid have a much higher kinetic energy and as a
result undergo collisions at much shorter separations which probe the



potential down to 2 A. It is this feature that provides the
information needed for extrapolating the isotherm to much higher
compressions.

The exp—6 potential has been characterized as an effective
pair-potential because it includes in a phenomenological fashion the
effects of the many-body interactions while retaining the convenient
features of a two-body function. For this reason it is of interest to
compare the present results to those for a purely two-body potential.
Figure 4.4 compares our best fit, exp-6(a = 13.2), with the two-body
potential of Aziz and Chen24 (HFD-C, their designation) which they
obtained by fitting to second virial coefficients, gas phase transport
data and to Hartree-Fock atom-atom calculations at small interatomic
separations. Also shown are the Hartree-Fock results of Gilbert and
Wahl25 and Christianson et al.26 Two CI calculations of Wadt2? lie
between the Hartree-Fock and HFD-C curves. The difference observed
between the exp-6 and HFD-C must be attributed to an effective
softening of the short range repulsion by many body interactionms.
These results are similar to those shown for hydrogen in Fig. 2.3 in
which the short range potential derived from shock data has also been
found to lie well below the two-body potential.

Electronic Energy Levels and Metallization

At pressures up to 400 kbar electronic thermal excitations in shock
compressed argon are negligible and this substance remains a simple
closed shell insulator fluid whose properties are determined by the
repulsive pair potential. Above this pressure the temperature is
greater than 12000 K and rising exponentially with compression. In
this higher temperature regime the properties are increasingly
dominated by electron thermal excitations from the closed 3p shell
into the 3d conduction band. A proper calculation of the Hugoniot
requires a knowledge of the density dependence of these energy levels.
The Wigner Seitz (WS) method has been used to calculate the

V em3/mole

Fig. 4.5. Calculated Wigner-Seitz energy levels of argon with atomic
notations. Solid curves are solutions for k = 0. Dashed curves show
bandwidth based on the estimate of the energy at the maximm k value.



electronic energy levels for compressed argon as a function of
volume.28 Although less rigorous than more modern methods the results
shown in Fig. 4.5 provide a simple illustration of the changes in
electronic structure with compression. At normal solid density the
lowest the 3d state is filled and the lowest excited state is the
4s-like conduction band. The effect of compression is to raise the
energy of the 3p and 4s relative to the 3d which at high compression
becomes the lowest excited state. The d state wavefunction is
relatively localized and unperturbed by compression. The calculations
predict that the 3d and 4s levels will cross at a volume of 4.5
cm3/mole. At this volume argon should become metallic. McMahan?l has
carried out extensive electron band theory calculations which predict
argon will undergo a structural transition from fcc to hcp at a
pressure below 2.3 Mbar with a volume change less than 0.1%. The
energy differences between these phases are too small to permit a more
precise prediction. McMahan also predicts that hep argon will become
metallic at 4.3 Mbar and fcc argon at 5.5 Mbar as the result of a band
gap closure. The transition from fce to hep, if it occurs, is not
expected to increase the pressure by more than 0.4% and should be
easily identified.

Hugoniot calculations were made for a model that treats the
electron thermal properties using semiconductor statistics, and
computes the fluid properties with a fluid variational theory
employing the exp-6 interatomic pair potential. The intermolecular
forces are assumed to be unaffected by the electronic excitation. The
total energy and pressure of the fluid are written

E(V, T) = E;__ (V, T) + AECY) N_(V, T) + E_(V, T), (4.1)
PV, T) =P, (V,T) - 2Ex (v, D) +P (V,T) (4.2)
! ins "’ v e’ e 'T?

where number of electrons N_ thermally excited to the conduction band
is determined using semicon&uctor theory.

3/2
1/2 [ 2qkT 3/4
= ol ok
Ne<T. V) 2(svsc) ( hz ) (mv m:)

X exp[; (A§£¥li]¥ . (4.3)

AE(V) is the volume-dependent gap. The E, and P, are the thermal
energy and pressure, respectively, of the free electrons and holes.
The effective masses, mz, are taken to be mgy, the free-electron mass.
The band degeneracies are g, and g.. Ej,g and Pj,o are the atomic
properties treated as an insulating fluid and computed using the
fluid-variational theory.

Theoretical calculations are compared with experimental data30 in
Fig. 4.6. The upper curve INS (for insulator) was computed using the
exp-6 pair potential and does not include electronic excitations. The
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Fig. 4.6. Experimental and theoretical argon Hugoniot data plotted as
pressure versus volume. Vg, = 28.6 cm3/mole. Experimental results

are shown with error bars. Theoretical curve labeled INS was computed
using an intermolecular potential and does not include electronic
excitations. The curves labeled WS and APW refer to Hugoniots
calculated using conduction band gaps predicted by the Wigner-Seitz
and augmented plane wave (APW) methods.

two lower curves include electronic thermal excitation calculated
using an electron band gap. The maximum electronic excitation
encountered in argon near 1 Mbar less than 0.12 electrons/atom, out of
a possible 6 in the full p shell, at the highest temperature.

By absorbing some of the shock energy, the excited electrons act
as thermal sinks, keeping the temperature down and lowering the
pressure. The volume dependence of the energy gap also plays an
important role. Because the 3p-3d gap is narrowing with decreasing
volume, it makes a negative contribution to the total pressure in
Eq. 4.2, lowering it further. These electronic thermal processes lead
to the observed softening of the experimental Hugoniot and shock
temperatures. Similar results have been observed in xenon which are
due to thermal excitation of electrons from the 5p to 5d states.31

Xenon, which has a filled 5p band and empty és and 5d-conduction
levels is of particular interest because it has the smallest
conduction band gap and is the leading candidate for metallization
among the rare gases. Band calculations predict that for an fcc
lattice under compression, the energy levels of the d-like conduction



band will overlap those of the 5p core and xenon will become metallie
at a pressure above 1.3 Mbar.

CsI which is isoelectronic with Xe is expected to demonstrate -
similar electronic properties. Predictions have been made that CsI
will become metallic near 1 Mbar as a result of the closure of the Sp
to 54 gap. Williams and Jeanloz32 measured the optical absorption
edges of CsI to 0.9 Mbar using a diamond anvil cell and Reichlin
et al.33 measured the optical reflectivity to 1.7 Mbar. These
results lead to a best estimate of 1.1 + 0.1 Mbar for the insulator to

metal transition.
4.3 Molecular Hydrogen

The equation of state (EOS) of hydrogen at very high density is of
considerable theoretical interest and is important for modeling of
giant planet interiors. Theoretical studies indicate that at
sufficiently high pressures, between 2 and 4 Mbar molecular hydrogen
will undergo a phase transition into a metallic state.

Static measurements for molecular hydrogen have been made on the
solid up to 370 kbar by van Straaten et al.34 and to 200 kbar by
Shimizu et al.35 These recent studies, both using the diamond anvil
cell, represent an order of magnitude extension of the pressure range
over earlier work.

Shockwave data has been reported for deuterium to 750 kbar and
seven times liquid density and for hydrogen to 110 kbar and three
times liquid density.36 In these experiments temperatures up to
7000 K are achieved, thereby probing the potential to intermolecular
separations of about 1.5 A. This is approximately the nearest
neighbor separation of molecules in the vicinity of the metallic
transition. However, the shock data provides little information about
the potential nearer the attractive well at low energies, and this
information is best obtained from static experiments.

Intermolecular potentials

The experimental H, and D, Hugoniot data has been analyzed using
several different Hy-H; potentials. The first of these is the
potential of Silvera and Goldman (s6)37 who used it to explain the
available static compression data. The SG potential ¢gg(r)
consists of two terms, i.e.,

bge(r) = ¢p(r> + ¢, () . (4.4)
Silvera and Goldman associate (r) with the potential of an isolated

Hp-Hy pair and ¢¢(r) with the “average” contribution by the Axelrod-
Teller triple dipole intraction. They are given, respectively, by

Cc C C
2 26,8 10
¢p(r) = exp(a ~ Br ~ yr') - ( r6 + ra + r1°‘> f(r) , (4.5)
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¢t(r) =9 f(r) . (4.6)

n

where the modulation function f(r),

1.28 rm 2
f(r) = exp | - - ~1 , r <1.28 T, e

=1, r>1l.283c , (4.7)

attenuates the long-range multipole terms at small r. The factor rp is
the position of the attractive minimum of ¢p(r). The SG potential has
been found to reproduce both the melting properties and the static
compression data of liquid Hy, and D, at 75-300 K to 2 GPa. However, it
becomes less suitable to explain the high pressure static and the dynamic
data. To remedy this, ¢go(r) was modified by softening it at small r.3

Fluid theory and Hugoniot calculations38

The thermodynamic properties were calculated using the Helmholtz free
energy (A) given by

A = 2.5 NKT + N[0.5 hv + kT 1In [1 ~ exp(- Bhv)]]
+ A, , + NKT 1ln p + constant, (4.8)
int
The first term is due to the kinetic energies of translation and
rotation; the second term, within the bracket, represents the free
energy of a vibrating molecule with frequency hv/k = 6340 K and 4395 K
for Hy and Dy, respectively. The term A;,; is the intermolecular
potential energy contribution evaluated from fluid variational theory:

Ail‘lt = AHS("I) + F(n) NKT

+ (pN/2) | dr ¢ (r) gHs(r, n) + AQH , . (4.9)

The last term is the first-order quantum mechanical correction to A
in the Wigner-Kirkwood expansion. It makes a negligible contribution
under the experimental shock-wave conditions except at the initial
states of liquid Hp and D,.

Figure 4.7 compares the experimental liquid D, Hugoniot with
theoretical calculations using the modified SG potential which agree
satisfactorily with the data over the entire range. The Hugoniot
calculated with the unmodified SG potential are too stiff. Molecular
dissociation was found to be negligible except on the double shocked
Hugoniot at 75 GPa where it leads to a 1% decrease in the volume which
is well within experimental error.

-Calculated solid isotherms for hydrogen are shown in Table 4.1
and are in agreement with the diamond-anvil experimental data of van
Straaten.



TABLE 4.1. 5 K isotherms of Hj.

Pressure (kbar)

' Calculations Experiment
(em3/mol)

10 22.6 22.7
9 35.1 34.6
8 56.2 54.1
7 89.0 87.8
6 153. 149.
S 274. 271.
4 529. 537.8
3 1173. 1120.8
2 3429. 3482.8
1.6 6082. 5892.8

8 Extrapolated values.
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Fig. 4.7, Single and double-shocked deuterium Hugoniots.



Metallic Transition

The possibility exists that hydrogen may become a metal by
dissociation into a monatomic phase or, as in the case of iodine,
first convert to an electrically conducting molecular phase as a
result of energetically overlapping valence and conduction bands. The
conducting molecular phase would then convert into a monatomic metal
at some higher pressure. Electron band calculations predicted a band
crossing in the molecule at 2.4 em3/mol,39 or 210 GPa (2.1 Mbar)
on our theoretical curve.

The molecular-to-metallic first-order phase transition was
estimated using ¢ to obtain the properties of solid Hy. The
transition pressure, predicted by equating the pressures and the Gibbs
free energies, is estimated to be between 3.1 and 3.6 Mbar. These
values suggest that an insulating molecular-to-metallic molecular
transition will first occur followed at higher pressure by the
diatomic to monatomic metal transitioms.3

4.4 The Dissociation of Dense Liquid Nitrogen

The dissociation of molecular nitrogen has been the subject of several
recent experimental and theoretical studies. McMahan and LeSar40
predicted that the molecular solid at 0 K should dissociate to a
monatomic phase near 0.8 Mbar. However subsequent diamond-anvil cell
studies have shown no evidence for such a transition up to 1.3 Mbar.
The failure to observe this transition has been attributed to a large
energy barrier between the two phases. In a series of papers Nellis
et al.4l nhave reported shockwave results which indicate that liquid
nitrogen begins to undergo a transformation at a pressure of 0.31 Mbar
and a temperature of about 7000 K. The most likely explanation is
that they have observed molecular dissociation.

In the simplest model, the one which neglects dissociation, the
intermolecular potential is described by a spherical angle averaged
interaction which neglects the diatomic structure of the molecule.

The parameters were chosen to scale from the argon potential by the
use of the law of corresponding states. The vibrational and
electronic energy levels are taken to be the free molecule values.

The calculated principal Hugoniot shown in Fig. 4.10 (curve A) is
in good agreement with the data of Nellis et al.4l up to about 310
kbar. Above this pressure the theoretical curve continues to rise
rapidly but fails to exhibit the large increase in compressibilty
observed experimentally. Clearly this model is incomplete because it

fails to incorporate dissociation.
Consider a reacting mixture of atoms and molecules. Let x be the

fraction of molecules that have undergone dissociation into atoms. We
write F the free energy per two atoms as;
0 0
= - 4.10
F=(l-x%) FN + xFZN +F ot Aint' ( )

2

where Fo and Fo are respectively the free energies of the isolated

Ny 2N



r
. B
2
E ]
a.
p—
m '
_
| 1 1 | 1
8 10 12 14 16 18 20 22 24
V cm3/mole

Fig. 4.8. Nitrogen Hugoniots, V, = 34.7 cm3/mole.

Theoretical curves: (A) with no dissociation; (B) including
dissociation with dissociation energy 9.76 eV; curves C and D include
dissociation with atomic phase binding energy. ’

molecule and of two atoms. Fpjy is the free energy of mixing.
Minimization of F determines X. Aj,¢ is the potential energy of the
fluid calculated using fluid variational theory. The results (curve
B) differ only slightly from curve A which neglects dissociation.
There are a number of reasons why the present model might fail
even when the dissociation energy is included. One is that some of
the energy levels of the pure components may be density dependent.
But the most likely cause probably stems from the neglect of the
atomic phase binding energy. 1In the gas phase 9.76 ev are required to
break the chemical bond and move the atoms to infinite separation.
Clearly this value cannot be correct in the very dense fluid because
it does not account for the recombination of atoms into other chemical
states. This binding would return some of the energy expended in the
bond breaking and decrease the energy needed for dissociation. An
analogous effect known as 'ionization lowering' is observed in dense
plasmas where the interaction of the ionized electron with the
remaining particles leads to a lowering of the effective ionization
energy. We may refer to the molecular analog as 'dissociation
lowering.' As an example consider the case in which the molecule is



compressed to such a high density that the molecular bond distance
becomes comparable to the intermolecular separation. At this density
much less than 9.76 ev would be required to dissociate the molecule.
Thus we may conclude that the dissociation energy should decrease
continuously from the gas phase value to some much smaller figure at
high density.

We introduce this reasoning into our thermodynamic model by
adding to the free energy a volume dependent term Ej equal the binding
energy of the atomic phase per two atoms. It contributes to the total
free energy in proportion to the fraction of molecules dissociated.

0
+ be . (4.11)

(]
F = (1-x)F “z + szu + Fmix + Aint

The volume dependence leads to an additional term in the pressure
equation:

P = RT/V(1+x) + P -(a—E"i-)x (4.12)
B int \av '

and to a volume dependent dissociation energy
D = 9.76 + Eyp. (4.13)

Since Ep has a negative value it lowers the dissociation energy
and leads to an increase in the dissociation fraction. Ep is
determined by fitting to the Hugoniot and is consistent with the
calculated cohesive energy for atomic nitrogen.

The introduction of a binding energy for the atomic phase results
in the softening of the Hugoniot shown as curve C (or D). The
calculated values of the dissociation energy and the fraction of
molecules dissociated are plotted in Fig. 4.9. Fig. 4.10 is an
overview of the nitrogen equation of state for the present model
showing the 0 K molecular and metallic isotherms and the Hugoniot.
Also shown are the results of McMahan who has calculated isotherms for
atomic nitrogen in several different crystal structures. The overall
agreement of the theoretical model with McMahan's results are
consistent with what one would expect from having determined
" empirically the bdinding energy from expanded metal data. Physically
what is happening is that every time a molecule dissociates, the two
atoms are converted into metal atoms lying on a much lower isotherm.
Thus the dissociation process leads to a drop in pressure or
equivalently to a volume collapse. An analogous behavior is that
observed in shock compressed liquid argon and xenon. In these liquids
electrons are thermally excited from the top of a filled p-like
valence band to the bottom of an unfilled d-like conduction band in
which they have a lower pressure. The energy band gap separating
these two states is decreasing with decreasing volume and this
introduces a negative contribution to the pressure just as it does in
the present case. And with the same effect. The negative
contribution to the thermal pressure leads to the large increase in
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molecules (x) calculated along theoretical Hugoniot.

15 T 11

1.0

0.5

P (Mbar)

-05 | ] 1 1 b
6 8 10 12 14 16 18 20
V cm3/mole

Fig. 4.10. Calculated molecular and atomic nitrogen equation of state
(solid curves). The dashed curves represent the results of McMahan
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the compressibility observed along the Hugoniot.

4.5 Polyatomic Molecules; Water and Ammonia.

The properties of water and ammonia have been studied with measurements
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Fig. 4.11. Electrical conductivity of water and ammonia. From Ref.

43. -
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Fig. 4.12. WNH3 shock temperature plotted as a function of
pressure. Solid line is a calculation using fluid variational

theory. From Ref. 43.



of the Hugoniot, shock temperatures and electrical conductivities.
The most interesting feature of work prior to 1979 were the early
electrical conductivity measurements of Hamman and Linton4? on water
"and aqueous solutions of KCl, KOH and HCL at shock pressures ranging
from 70-133 kbar. By combining the measured ionic conductivities of
these compounds it was estimated that the ionization of water becomes
nearly complete at 200 kbar and that this transformation may be
responsible for the change in the compressibility of the water
Hugoniot above and below the 150-200 kbar region. The shock
temperature and electrical measurements on water have been extended to
600 kbar and more recently these were made for ammonia.43

_ Comparison of the calculated temperatures with the experimental
results for NHyq in Fig. 4.12 shows that the model is in reasonably
good agreement with the data. The small deviation of 10% at the
highest pressure maybe an indication of an additional absorption
mechanism at these high pressures. Previous electrical conductivity
measurements on ammonia have shown that it becomes conductive in the
range 70-280 GPa. The mechanism proposed to explain the high
conductivity was molecular dissociation-ionization. The relatively
small difference between the measured temperatures and those
calculated using this non-dissociative model suggests that
dissociation is not sufficient to affect the equation of state in a
dramatic way. Including dissociation-ionization in the model would
have the effect of lowering the calculated temperatures in the
direction of better agreement with the experimental data.

Theoretical studies on water are complicated by strong

electrostatic interactions and highly nonspherical potentials.
Ree44 has carried out a detailed study of shock compressed water
using fluid perturbation theory and intermolecular potentials based on
quantum mechanical ab-initio calculations. Of the several potentials
examined Ree found best agreement with experiment was given by the
Stillinger and Rahman ST2 potential. This is a non-spherical
atom-atom potential which must be suitably averaged over all
orientations of molecules 1 and 2 at fixed intermolecular separations.

4.5 Carbon Compounds

Chemical decomposition is known to occur in small molecules containing
carbon and in hydrocarbons. Yakusheva et al.43 have shown that the
shock compression of many transparent and colourless hydrocarbons
above about 100 kbar and 1000 K is accompanied by a break in the
Hugoniot curve and a sharp increase in the light absorbance, resulting
in a loss of transparency. These features suggest a rapid pyrolysis
of the initial molecule and the formation of an opaque carbon
condensate (i.e., tars, graphite). Liquid CS, exhibits similar
behaviour when it is shock-compressed to approximately 60 kbar and
statically compressed to about the same pressure. CO probably
decomposes into carbon and CO,.

Theoretical calculations of hydrocarbon Hugoniots, including
methane, predict that shock heating induces C-H bondscission and
favours the condensation of C atoms into elemental carbon.46 The
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formulation considers a chemical equilibrium involving C (diamond), C
(graphite), and Hy, plus nine other low molecular-weight species, CH,,
CaHp, CgHg, CaH4, CoHg, CaHg, C3zHg, C4Hjg, and CsHyz. The
concentrations are determined by minimizing the Gibbs free energy.
The Hugoniot calculated for molecular benzene shown in Fig. 4.13
suggests the benzene molecule dissociates above a shock pressure of
130 kbar. Similar results have been obtained for a large number of
hydrocarbons.

4.6 The Structure of Dense Alkali Halide Melts

The unique characteristic of shockwave experiments is that they can be
used to explore states of matter at very high pressure and temperature
that are inaccessible by other techniques. This property makes it
valuable for studying melting at extreme conditions. The usefulness
of shock melting data is not that it simply represents more data but
that it greatly extends the range of conditions over which to test the
applicability of melting laws and concepts.

When a substance melts at atmospheric pressure the added energy
does not lead to a rise in temperature until the process has been
completed. Under shock compression the pressure-temperature path
passes through the melting curve. This feature was first observed by
Kormer, et al.47 (Fig. 4.12) in shock temperature measurements on
NaCl and KCl. Similar results for CsI, have recently been obtained by
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Radousky, et al.48

X-ray scattering and neutron diffraction experiments coupled with
Monte Carlo and hypernetted chain (HNC) equation calculations have
established that at atmospheric pressure alkali halide melts are
characterized by a relatively open NaCl-like structure containing
about 5 to 6 atoms in the nearest neighbor shell. The application of
pressure is believed to result in a gradual increase in the
coordination number. But very little is known experimentally.

The hypernetted chain equation is now widely used for calculating
the properties of ionic fluids.49 Calculations were made using an
exponential six function to represent the pair-potential for the inert
gas xenon and for CsI using an exponential-six with a coulomb term
added.

2

zlzze.

¢(r) = ¢exp6(r) +

where Z; and Z; are the ion charges. The xenon results provide a
reference against which to judge the occurrence of a structural change
in CsI to an inert gas-like structure.

Figure 4.15a shows the partial distribution functions of liquid
CsI calculated at its normal melting temperature The atomic
separations in the figure are plotted in units of r/a where a is the
mean ion sphere radius, or a = (3/74%V/N)1/3. For these potentials g4y =
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Fig. 4.15. (a) Partial distribution functions for CsI; (b) _
Comparison of total distribution functions for CsI and Xe. P ~ 0

kbar.

g_ . The figure exhibits the characteristic alkali halide arrangement
of alternating shells of unlike and like charge. Figure 4.15b compares
the total pair distribution function, g(r) = (g(r) + g, _(r))/2, of
Csl with that for the xenon-like fluid (potential 1). The figure
shows two very different structures. The reader may have noted that
there is a shoulder in the first g,, peak near (r/a) = 2.3. This is
the start of a pressure induced splitting into two new peaks.

As the pressure along the freezing line increases the splitting
of the g,, peak becomes more pronounced. Increasing the pressure to
about 300 kbar (3650 K) to near the observed shock freezing point
shifts the first g,, peak to inside the 84 - first peak envelope
(Fig. 4.16a). As a result the total distribution functions of Xe and
CsI (Fig. 4.16b) are now virtually identical. Each ion has about 12
nearest neighbors, as in a close-packed system, of which seven are
oppositely charged and five have the same charge. Figure 4.16a
demonstrates that the oppositely charged neighbors on the average
approach each other more closely than do ions with the same charge.
But a considerable degree of interpenetration exists. At pressures up
to 700 kbar no important changes were observed.

These results demonstrate that at sufficiently high density the
short range repulsive forces will be dominant over the long range
attraction. Near the pressure of 300 kbar, where the Hugoniot enters
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kbar.

the fluid, the contribution of the exp-6 is an order of magnitude
larger than that of the Coulomb term. Thus the properties are
dominated by the strong repulsive forces and the liquid adopts a xenon
or hard sphere-like structure. The application of pressure has the
effect of “dialing down," or decoupling the influence of the coulomb
forces. The results demonstrate the existence of a gradual
pressure-induced shift in the structure of an alkali halide melt from
an open arrangement to one characteristic of a simple non-ionic
fluid. Tallon®% has considered the possibility that the shapes of
melting curves could be understood by a continuous pressure induced
change in the melt to a more closely packed state. Tallon explains
the curvature and projected occurrence of the maxima in terms of a
continuous transition in the melt from the lower density
six~coordinated state to a higher density eight-coordinated state at
higher pressure. His conclusions are generally confirmed by the
present results in the sense that we also believe that the fluid
becomes more densely packed.

Recently several authors have suggested that liquid silicates and
magmas undergo an increase in coordination number with increasing
pressure.’1~32 Thus, it appears that the phenomena observed in
alkali halides is not isolated but is a more general feature of ionic
materials that has important consequences for geophysics.
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